On the Maximal Inequalities for Martingales Involving Two Functions

نویسندگان

  • MEI TAO
  • Claudia M. Neuhauser
  • PEIDE LIU
چکیده

Let Φ(t) and Ψ(t) be nonnegative convex functions, and let φ and ψ be the right continuous derivatives of Φ and Ψ, respectively. In this paper, we prove the equivalence of the following three conditions: (i) ‖f∗‖Φ ≤ c‖f‖Ψ, (ii) LΨ ⊆ HΦ and (iii) ∫ t s0 φ(s) s ds ≤ cψ(ct), ∀t > s0, where LΨ and HΦ are the Orlicz martingale spaces. As a corollary, we get a sufficient and necessary condition under which the extension of Doob’s inequality holds. We also discuss the converse inequalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

A noncommutative Davis’ decomposition for martingales

The theory of noncommutative martingale inequalities has been rapidly developed since the establishment of the noncommutative Burkholder-Gundy inequalities in [12]. Many of the classical martingale inequalities has been transferred to the noncommutative setting. These include, in particular, the Doob maximal inequality in [3], the Burkholder/Rosenthal inequality in [5], [8], several weak type (...

متن کامل

A Systematic Martingale Construction With Applications to Permutation Inequalities

We illustrate a process that constructs martingales with help from matrix products that arise naturally in the theory of sampling without replacement. The usefulness of the new martingales is illustrated by the development of maximal inequalities for permuted sequences of real numbers. Some of these inequalities are new and some are variations of classical inequalities like those introduced by ...

متن کامل

Conditioned Square Functions for Non-commutative Martingales

Abstract. We prove a weak-type (1,1) inequality involving conditioned square functions of martingales in non-commutative L-spaces associated with finite von Neumann algebras. As application, we determine the optimal orders for the best constants in the non-commutative Burkholder/Rosenthal inequalities from Ann. Probab. 31 (2003), 948-995. We also discuss BMO-norms of sums of non commuting order...

متن کامل

Some Integral Inequalities of Hermite-Hadamard Type for Multiplicatively s-Preinvex Functions

In this paper, we establish integral inequalities of Hermite-Hadamard type for multiplicativelys-preinvex functions. We also obtain some new inequalities involving multiplicative integralsby using some properties of multiplicatively s-preinvex and preinvex functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001